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Robert Hummel

Representations based on Zero-crossings
In Scale-Space

Robert A. Hummel

Abstract

Using the Heat Equation to formulate the notion of scale-space filtering, we show
that the evolution property of level-crossings in scale-space is equivalent to the max-
imum principle. We briefly discuss filtering over bounded domains. We then con-
sider the completeness of the representation of data by zero-crossings, nd observe
that for polynomial data, the issue is solved by standard results in algebraic
geometry. For more general data, we argue that gradient information along the
zero-crossings is needed, and that although such information more than suffices, the
representation is still not stable. We give a simple linear procedure for reconstruc-
tion of data from zero-crossings and gradient data along zero-crossings in both con-
tinuous and discrete scale-space domains. .

1. Scale-space and zero-crossings
The use of multiresolution representations is an important idea for the analysis

of signal and image data. Many data structures have been studied, including Gaus-
sian pyramids, difference-of-Gaussian pyramids, Laplacian pyramids, and "scale-
space" formulations [1,2,3]. The latter formulation, to be described briefly below,
can be used as a continuous model of the other formulations. We will discuss the
representation of data by zero-crossings in scale-space, and consider the stability of
reconstruction methods.

The natural framework for the analysis of scale-space formulations of mul-
tiresolution representation is in terms of the heat equation [4,5]. Specifically, let
f(x) be a bounded function defined for xER'. (Arbitrary dimensions can be han-
dled with little additional fuss over the case n = 1; we will later comment on the
case of a bounded domain D C R" ). We define u(x,t) to be a bounded solution to
the heat equation:

au _= Au, (Heat Equation)
at

u(x,O) = f(x).
The solution is given by convolution against the fundamental solution to the Heat
Equation, which for the domain IR' is given by

u(xt) f K(x-y,t)f(y)dy,
IR

where
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Representations based on Zero-crosungs In Scale Space

K(x,t) - (41rt)-1 2e- IxJ2/4t.

We see that u(xt) is obtained by blurring f(x) by increasingly diffuse Gaussians,
parameterized by t>O, with standard deviations a satisfying 2al 4t. In computer
vision, scale-space sometimes refers to the (x,a) variables that can be used to
reparameterize the domain of u. We retain the (x,t) parameterization to keep the
linear Heat Equation relation for the function u.

Convolution by Gaussians is considered special for many reasons [6,4, 7]. We
see from the above analysis a relationship between Gaussian convolution, the Heat
Equation, and the Laplacian operator. Of course, Gaussian convolution enjoys
other properties; for example, the central limit theorem implies that Gaussian con-
volution is easy to implement by an iterative procedure. However, we also see the
extent of the similarity of difference of Gaussians and the Laplacian of the Gaus-
sian; namely, since K(x,t) is itself a solution to the Heat Equation,

(AK) (x,t) -( = lim(K(x,t+T) - K(x,t))Ir.( , (x,tt)'_

That is, the difference of Gaussians is a good approximation to AK as the separation
between the spread of the two Gaussians approaches zero (and the difference is
scaled).

Filtering by the Laplacian of a Gaussian can be written in three ways:

AK*f = K*Af = A(K*f).
If we denote the result by v(x,t), we see that
(1) v(x,t) is the f(x) data filtered by the Laplacian of a Guassian.
(2) v(x,t) is the solution to the Heat Equation with initial data Af.
(3) v(x,t) is Au(x,t), where u is the solution to the Heat Equation with initial data

f(x).
The zero set of v(x,t) is the point set in (x,t) where v - 0. The set might be

empty (for instance, if f is subharmonic or superharmonic; [8]) everything (if f is
harmonic; [9] ), or a proper subset of (x,t) space. In the latter case, zeros can be
isolated points, lines, and surfaces (but never regions). We distinguish components
of the zero set which form manifolds of codimension one:

Definition: The zero-crossings of v(x,t) refers to the point set

a((xt) Iv(x,t) < 0} n 8{(x,t)Iv(x,t)>O}. i

Zero-crossings have been suggested for segmentation of imagery by edge detection
[10], and for stereo matching and motion correspondence between pairs of images
(e.g., [11]). It has also been suggested [7] that the zero-crossings are a nearly com-
plete representation of Af. Finally, Witkin [3] observes that zero-crossings in
scale-space evolve as t increases, and are never created at some nonzero t . This
property, discussed in [7] and in [6], ensures that zero-crossing surfaces are nested,
one within another, enclosing regions containing the face ft = 0}, or forming a sheet
meeting the face {t = 01 and extending to t = c. The property can be given a pre-cise statement:

Evolution property of zero-crossings: Let C be a connected component of the set of 10
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zero-crossings in the domain {(x,t) Ix ER, TIStT 2}, where 0:Ti < T 2 . Then
c n {(x,t)It - TI} O. M

In the remainder of this paper, we wish to make two main points. First, we
establish the equivalence of the "Evolution property for zero-crossings" and the
classical maximum principle for parabolic partial differential equations, thereby
allowing us to consider bounded domains and nonstationary convolutions. Second,
we consider reconstructibility from zero-crossings. The principle result is that if
knowledge of the location of the zero-crossings is supplemented with gradient infor-
mation of v at only those points in the zero-crossings, then there is a simple scheme
for reconstructing some of the data, but that even then numerical accuracy of the
reconstruction is unstable.

2. The Maximum Principle-
The classical maximum principle for the solution to the parabolic equation

auIat - Au states (see, e.g., [12, 13, 14]):

Maximum Principle: Let D Q R" be open and bounded. Suppose u is a solution in
T = ((x,t) I xED, O<t<T} of class C2 which is continuous in the closure T. Then
u assumes its maximum at some point (x,t) for which either xED or t = 0. N

Next, suppose that scale-space construction is denoted by the operator v - Sg,
which is to say that the scaled function v(x,t) is obtained from the initial data g(x).
In the previous section, we defined S to be v(x,t) - K(.,t) * g, where
g(x) - Af(x), but we can imagine more general operators. In any case, it is logical
to make certain assumptions about S, although all we will require is that
(1) If g(x) is continuous, then Sg is continuous.

(2) S(-g) - -Sg for all g, and if v - Sg and j(x) - v(x,r), then = , where
v(x,t) - v(x,t+1).

(3) If g(x)--O as Ix I-o and v = Sg, then for each t, v(x,t)-.O as Ix I--a.
We note that if S is defined by convolution with Gaussians as in Section 1, then

the maximum principle holds for v = Sg as long as g is continuous; further, condi-
tions (1) - (3) hold.

Our first result is:

Proposition: The following are equivalent:

(i) The maximum principle holds for solutions v = Sg using continuous initial data
g(x) satisfying g(x)--O as Ix I-w.

(ii) The evolution property holds for level-crossings of solutions v = Sg using a
scale-space operator S satisfying (1) - (3) above and continuous g(x) satisfying
g(x)-.O as Ix I-o.

Proof: We first show that the maximum principle implies the evolution property.
For if the evolution property fails for a level-crossing 1 for some v(xt), then by
suitably transforming v, g, and 1, we can assume that 12O, and that there is a solu-
tion v = Sg, (with g-O as Ix I-cc) with a component C of
{(x,t) I Ot:ST, v(x,t)>l} disjoint from the plane t = 0. Let (xo,to) be a relative
maximum in C . Then since C is open, there is a bounded cylinder in C with
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(x0,t0) in the interior, which is in violation of the maximum principle.

Conversely, if the maximum principle fails, then for some cylinder D x [0,T]
and some v(xt) given by v - S with g(x)-.O as Iz 1--.., the maximum of v occurs
either in the interior or the top of the cylinder. Either way, there is a value I less
than the maximum but greater than the values on the bottom and sides of the
cylinder. Thus there is a component of the level-I crossing within the wedge O:t :T
which lies entirely within the interior of the cylinder, and thus does not meet
(t - 0). So the evolution property for level-crossings is violated. U

We illustrate the utility of the proposition with three observations. First, given
the equivalence with the maximum principle, any proof of the evolution property
for zero-crossings that does not either use the maximum principle or essentially
redo the proof of the maximum principle is highly suspect. Since the maximum
principle is slightly delicate, especially in the absence of strong regularity assump-
tions, the former course seems more appropriate.

Second, using the version of the gradient Hopf maximum principle for the Heat
Equation [13], it is not hard to show that knowledge of the zero-crossings together
with gradient information along with the zero-crossings (or even just one zero-
crossing contour) is sufficient to determine v(x,t) uniquely [15]. In section 3, we
give a more constructive discussion of this point; but it is interesting that the max-
imum principle establishes this uniqueness.

Finally, we see that any scaling method obeying the maximum principle will
yield the evolution property for zero-crossings. Under fairly severe restrictions,
this leads one to Gaussian convolution [6], but more general scaling methods are
possible. For example, blurring by a parabolic operator of the form aul/t = Lu,
where L is a uniformly elliptic linear second order differential operator with non-
constant coefficients will certainly still give a maximum principle. In fact, L can be
nonlinear [16]. Moreover, suppose we replace R" with a bounded domain
D Q R", and insist on data f(x) with compact support in the interor of D. We may
then define v = Sg, where g - Af, by solving

av/at = Av in D X(0,ao),

v(x,0) - g(x) for x ED

v(x,t) =0 for x(aD.

This scaling is not given by convolution against a Gaussian, since the domain is
bounded, but nonetheless obeys a maximum principle, and gives the same evolution
property.

3. Completeness

We return to a consideration of zero-crossings of data v(xt) obtained by filter-
ing initial data f(x) defined for xEIR" by the Laplacian of Gaussians, AK(.,r). The
question we wish to address is: to what extent do the zero-crossings represent f(.r)?
Clearly, f(x) can at best be reconstructed to within an arbitrary additive harmonic
function and a scalar multiple. However. if we assume that f(r)-.O as Ix I-oc. then
only the multiplicative constant is of concern.
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Yuille and Poggio [17] make the observation that if g(x) and hence f(x) is
polynomial in x, and if n- 1, then reconstruction from zero-crossings is theoretically
possible. They also refer to the validity of the observation for larger n.

We note, however, that when g(x) is a polynomial in x(R' for any n, then
v(x,t) is a polynomial in (xt)ER' + 1. Accordingly, the zero-crossings are part of
the analytic varieties of the polynomial v as studied in algebraic geometry. It is well
known that the varieties in C" determine the complex polynomial defined on n com-
plex variables. It is not as commonly used, but nonetheless true, that an n-
dimensional subportion of the intersection of the analytic variety with ]R+1 also
determines the polynomial [18]. Thus the case of polynomial data can be settled
vfith algebraic geometry.

However, since the determination of a polynomial by its varieties is essentially
an analytic continuation result, stability of the reconstruction is unlikely. That is,
small errors in measurement of the zero-crossings could lead to arbitrarily large
errors in the determination of g(x). Put differently, there can be widely different
initial data leading to nearly identical zero-crossing data.

Worse, settling the case for polynomial data says little about the case of con-
tinuous initial data. Although the Stone-Weierstrass theorem says that a continuous
function can be uniformly approximated by a polynomial on a compact set, the
zero-crossings depend on the initial data globally, and the dependence can't be local-
ized. Further, the lack of stability means that the approximation is irrelevant. The
situation is similar to the fact that a polynomial of a single variable with all real
roots is determined by its zeros, but that given all the zeros of a continuous func-
tion, one knows nothing more than the zeros.

In fact, there are known examples of pairs of functions fi(x) and f 2 (x) such
that the corresponding v1(x,t) and v2 (x,t) have identical zero-crossings at all levels
of resolution. John Daugman supplies the example (for two space dimensions) of
fl(xl,x2) = sinxj, and f 2 (xl,x2) = (sinxl)( 2 + cosx 2).

However, if the zero-crossing data is supplemented with knowledge of the gra-
dient data at the zero-crossings, then reconstruction of at least some of the data
g(x) is theoretically possible by a quite easy procedure, given below. Details of
these ideas were reported earlier in an unpublished work [15]. The use of gradient
data for the representation also appears in (4], but the gradient data there is not lim-
ited to the zero-crossings. The use of gradient data along zero-crossings is dis-
cussed in [19]. Many researchers have noted from a casual observation of zero-
crossings of image data that zero-crossings with large gradient magnitudes are of
greater significance than those with low gradient magnitudes.

3.1. Continuous Case
Specifically, let fl be a bounded connected component of

((x,t)I tO, v(x,t)* O}, and denote by D the set {xER"(x,O)Efl}, and by F the
zero-crossing an(l{t>O}. Let T be a value such that -r>sup{tj(x,t)(fl}. Next, we
set g(x) = g(x) for xED, and g-(x) = 0 elsewhere. Finally, let b(x) be the g(r)
data blurred to the level Tr:
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b(y)- fK(y-zr)j(x)dx.

Using Green's theorem, it is easy to show:

Proposition:

b(y) - fK(y-x,r-t)Vv(x,t).ndcr,
r

where n is a surface normal to r at (x,t), and dcr is surface area measure. 0
Thus given the zero-crossing r and Vv(x,t) for (x,t)Er, then the blurred data

b(x) can be constructed by a simple linear processJ The original data j(x) can be
reconstructed by deblurring the b (x) data (20]. Deblurring is, of course, a classic
unstable process. The situation is not hopeless, however, since g(x) has known
compact support, which might be used to advantage, and also since errors that occur
are predominantly in high frequency components, which might not be as essential to
visual interpretability.

The lesson of this section. ultimately, is that even for bounded zero-crossings
supplemented with gradient data along the zero-crossing, reconstruction is still
unstable. We defer a remark on relaxing the constraint that the zero-crossing be
bounded until the next subsection, where we consider a discrete version of the result
of this section.

3.2. Discrete Data

For simplicity, we treat the casc of one unbounded space dimension, although
the results extend easily. We are given data fi, i • •-1.0.1, and define

gI - - I tf.A+

We define the filtered data vik recursively:

vi, 0 gi,

1 1 1
Vik+ I .ik I Vi l,k.

We also define the blurring kernel

~k T(+k)'

Both v and K satisfy a discrete version of the Heat Equation, namely
I 1-j I1ik,

It is not hard to prove a discrete analogue of the evolution property for zero-
crossings. The key, as one might suspect from Section 1. is a discrete version of the
maximum principle, which is easy to establish.

Let 0 be a bounded 4-connected collection of pixels (ijk) with a nonempty set

S-- {iI(i.O)Efl). Let T be an upper bound T>max(kI(i,k)Efl}, and define h, to

be the data g,. iED. blurred to level T:

Page 6 i
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hiJED K-''"di

Finally, let
-(l0I ((4k) EOI](i± 1,k) LOI},

a(o,)fl - ((i,k).flI(i,k + 1) fil},

a(O, _)fl = ((i,k)E(lj k>O, (i,k-1)(fl}.

Then simple but messy algebra allows us to show
Proposition:

[Vi~k'lVi+a~k

4bj- KI [+--J ,T -k-l Ki-J,T-k-1]

K+a-JT-k-i+K.JT.k-1., 1
2

+ 4 vjk+1"KI-j,T-k-
(L,k) E a (ol)fL ,

- , 4 V,kI'K-j,T-k.(i,k)(ea(o,- )f i
To reconstruct data by the above equation, choose a connected component of

((i,k)jv(i,k)>O}, (or respectively <0 ). If the component extends to infinity in
either coordinate, truncate the domain to become a convenient bounded collection of
pixels, and denote the result by aI. We store the sets 8(±1 ,o)f1, a(O,± 1)fl, and D as
defined earlier. For pixels (i,k) in 8(1,0)fl (respectively a(_1,O)fl ), we store the
information vi,k and Vi+1,k, (respectively Vi,k and Vi_1,k). For pixels (i,k) in a(o,1)11,
we store the data Vi,k+l and for a(o,-i)fl pixels we store Vi,k. Using the above
equation, we choose a T and reconstruct the blurred data bj. To reconstruct the
data g, for i E P, it suffices to deblur the bi data by solving for gi in the linear equa-
tions defining bi. In fact, the system is overdetermined, although still poorly condi-
tioned, especially if I D I or T is large. o

In order to make the computations feasible, it is necessary to modify the for- %
mulas for a bounded spatial domain. We in fact solved a bounded domain problem,
with -N:i:N, setting vI,k = 0 for i = ±N. The blurring kernel K is changed by
this modification, but the proposition carries over with little change. -

In Figure 1, we show a 1-D signal gi, and the zero crossing separating positive
and negative regions of the associated Vi,k. Applying the above procedure to the
central positive component fl, we obtain the reconstructed b, data shown in Figure
2. The true bi data is identical to essentially machine precision. Finally, using the .,
method of pseudoinverses to deblur the data shown in Figure 2, we obtain gj for i in
the middle range, as shown in Figure 3. This is to be compared with the true initial
data in Figure la. The poor correspondence is due to the fact that the deblurring Z, AZ*-
problem is poorly conditioned; better deblurring results are obtained if the amount

Page 7
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of deblurring is very small. However, this requires that the top of zero-crossing
contour enclosing the data occurs after not too many blurring steps. The lesson
learned here is that although reconstruction is in theory possible, practical recon-
struction may be impossible.

0.5-

Initial
Data0

-0.5-

-50 -15 15 50

Figure la. Initial g(i)

1500-

Scale iooo
Space -

Number of
Blurrings 500-

0-
-50 -15 15 50

Figure lb. Zero-crossings

Figure 1. An initial function gi and the zero crossing pixels in V, k where Vj k blurs the ini-
tial data by scaling in k.
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0.5 -...

0.4-

0.3-
b

Blurred data
0.2-- -

0.1 **'

-0 ss
-50 -15 15 50 ., .

Figure 2. The reconstructed function bi using the formula from Proposition 2. The data .

represents the result of blurring the gi data restricted to the central positive interval, zero ex-
tended elsewhere, to a level k above the top of the zero crossing for V1,k shown in Figure 1
above. The reconstruction uses only information about Vi.k along the zero-crossing, and is
nearly exact to machine precision.
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4-

, .4

2

9S

Reconstructed

0

-15 0 15

Figure 3. An attempt at reconstructing gi using the data bi from Figure 2. The attempt fails V
because the matrix equation Kg = b relating the g data to the b data is poorly conditioned,
even though there are many more b values than g values. Thus the small errors due to
round-off in representing the bi data are magnified when reconstructing gi. The singular
value decomposition software in Creve Moler's "matlab" package was used.

.,

4. Comments
Zero-crossings of scale-space filtered data seems like an unlikely form of

representation of data. The results presented here suggest that even when supple-
mented with gradient data along the zero-crossings, the representation is still
unlikely. However, the instability of the representation does not completely deny
its utility, since it might happen that the classes of functions mapping to similar
representations share properties essential for interpretation. A required step in the
validation of the utility of a representation is an analysis of the invariant properties
of signals that yield similar representations. A necessary condition is that attempted
reconstructions differ from originals in unessential ways, (from the standpoint of
interpretation). The methods outlined here should prove useful in verifying or
disproving this necessary aspect of establishing a viable representation.
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